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Abstract 

The object of this paper was to develop a methodology for determining the linear urban 

land expansion of the City of Calgary in recent decades. Academic literature was reviewed that 

described four principal drivers of urban land expansion globally: urban population growth, 

urban dedensification, economic growth and government policy. Additionally, the literature 

demonstrated that cloud geo-computing is increasing the efficiency with which ULE researchers 

can analyse urban footprint growth. The cloud geo-computing platform Google Earth Engine was 

used to analyse the urban extent of the City of Calgary over time. That data was merged into a 

time-series dataset that was utilised in a vector GIS environment to analyse the radial linear 

urban land expansion of the city between 1985 and 2020. The results showed that the city grew 

in a directionally non-uniform way and at different paces over each 5-year increment. This 

methodology constitutes an addition to the growing body of ULE research by providing a 

different perspective from the commonly used area-based ULE analyses. 
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Introduction 

This literature review is concerned with the principal drivers of urban land expansion 

(ULE) and the implication of cloud geo-computing for the quantitative measurement of ULE. 

ULE is a phenomenon that is presently occurring in almost all urban regions throughout the 

globe regardless of their development status. ULE is the process of urbanized land footprint 

expansion that results from the conversion of greenfield lands on the peripheries of cities into 

urbanized neighbourhoods or commercial districts. The rapid growth of cities throughout the 

world has increased concerns about the environmental, social and economic effects of ULE. The 

growing body of research on ULE has been particularly focused on East Asia because of the high 

rate of peri-urban land loss caused by the explosive pace of urbanisation in the last few decades. 

This period of explosive urban growth coincided with improvements in remote sensing 

technology and growing data libraries which enable time-series analysis. The literature elicits 

similar drivers of ULE globally to those described in the East Asia studies. The academic 

literature describes four primary drivers of ULE as we see it throughout the globe today: urban 

population growth, urban dedensification, economic growth and government policy. 

Though it is difficult to disentangle exactly how much of an effect each of these four 

factors has had at a given time and place, researchers have measured the geographic urban land 

expansion of many cities throughout the globe using quantitative geographic methods and 

geospatial technologies. Much of the literature analyses ULE through case studies of specific 

urban regions or as ULE methods development on small geographic land samples. The scaling 

limitations of satellite data processing before the advent of cloud geo-computing limited the 

scope of quantitative ULE research because of data storage and processing constraints. An 

exploration of the quantitative ULE literature shows that it is quite methodologically 
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heterogenous, with researchers using spectral, algebraic and machine learning methods to 

measure or predict ULE. Geospatial methods have evolved quickly toward utilising satellite 

imagery to more efficiently model ULE in cloud-based geo-computation platforms. The 

literature suggests that cloud geo-computation is improving scalability in geospatial data 

sciences generally and quantitative ULE studies specifically.  

The project that proceeds the literature review seeks to develop a spatial time-series 

based method for measuring the radial urban growth of Calgary, Alberta. Surveying the literature 

showed that the field lacks a radial linear growth metric. Almost all the reviewed research looks 

at areal urban land expansion (AULE) as the main metric of urban growth. This concentration in 

a single metrics category indicates that some alternative measurement schemes should be 

explored. Landsat images were used in the cloud geo-computing platform Google Earth Engine 

to create an evolutionary dataset of the urban footprint of the City of Calgary between 1985 and 

2020 using spectral indices, in 5-year increments. With this data, a methodology for assessing 

linear urban land expansion (LULE) was developed using conventional GIS software. The results 

showed that Calgary had a rising annual average rate of LULE until 2015 and developed in a 

non-uniform way during the study period. A significant drop in the rate of ULE was noted 

between 2015 and 2020. However, this paper will not disentangle which of the four noted ULE 

drivers was the most impactful on Calgary’s rate of LULE. The findings outlined the 

heterogenous nature of city growth both temporally and spatially using a possibly novel 

methodology.  
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Literature Review 

In studying the academic literature on urban land expansion, four principal drivers 

emerged. These four drivers of urban land expansion are urban population growth, urban 

population dedensification, economic growth and government policy. Much of the research looks 

at the history of city-regions and the multifactorial characteristics of their emergence. The 

geographic pervasiveness of the ULE issue indicates that it is a global phenomenon.  

City-regions throughout the globe are struggling today to counter the forces of low-

density urban growth. Containing ULE would help reign in the negative environmental, fiscal, 

and social costs of unfettered urban land expansion to achieve more sustainable urban growth. To 

contextualize the project that follows this literature review, the four principal drivers of ULE will 

be discussed in the context of Calgary, Alberta. 

The literature also highlighted that the advancement of new hardware-software system 

architectures puts the field on the verge of creating high-resolution ULE studies with a global 

scale. Research up to the recent adoption of cloud geo-computing is very methodologically 

heterogenous and limited in spatial extent. Improved scalability from the adoption of cloud geo-

computing will drive a consolidation of ULE methods and lead to a clear and replicable set of 

ULE metrics for global and regional studies.  
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Four Primary Factors  

Urban Population Growth 

The literature suggest that urban population growth has been one of the primary drivers 

of the expansion of cities globally. Some researchers call this urbanization, which is a closely 

connected phenomena to ULE. Urbanization is broader in scope as it encompasses the wholistic 

and dynamic processes of both city building (fringe development, ULE) as well as urban 

transition and transformation (internal urban redevelopment). This definition characterizes the 

process of physical urbanization, whereby places are becoming progressively ‘more urban’ as 

urban land uses expand and intensify. However, urbanization is also commonly used as a term 

for demographic process where a greater proportion of global or local populations live in urban 

rather than rural places. This last definition explains why most scholars agree that modern 

urbanization began around the time of the industrial revolution. During that period, a large 

portion of rural populations were displaced or moved into cities in the United Kingdom. This 

rapid population urbanization would soon be followed by other major Western European and 

North American countries.  

 

Figure 1. Urban population proportion over time in notable urbanizing countries (Global Change Data 

Lab - Oxford University, 2018) 



  5 

 

 

 

Urbanization has driven up the proportion of the human population living in cities since 

the time of the industrial and agricultural revolutions of the late 18th century, which transformed 

population dynamics in a matter of about two generations (Global Change Data Lab - Oxford 

University, 2018). Today almost all countries throughout the world are experiencing some form 

of rapid or consistent population urbanization. Population urbanization helped the global urban 

population to surpass the rural population in mid-2009 for the first time in history (United 

Nations - DESA, 2009). 

 

Figure 2. Graph of global urban and rural population over time (Ritchie, 2018) 

Though some countries were later to begin their process of mass population urbanization, 

the process appears to be accelerated in nations that have urbanized in the post-war era. Figure 1 

shows that Japan and China have notably steep urbanization curves since the end of world war 2. 

India appears have a steepening curve that indicates mass urbanization is only just beginning in 

that country. The urbanization of the population of India will moved hundreds of millions of 

people into cities in the coming decades if the current trendline continues.  

Much of the research that describes the drivers of ULE focuses on urban population 

growth in in less developed countries (LDCs). The pace and form of ULE can have a significant 
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effect on environmental, human, fiscal and infrastructural risks. Many less developed counties 

lack the resources or governing capacity to fully control or even direct urbanization, which often 

results in dangerous infrastructure and unserviceable neighbourhoods. This problem is 

aggravated by the fact that LDCs typically have higher rates of population growth. This results in 

unsustainable urban development which can perpetuate poverty, poor health and economic 

problems.  

Cities like Port-au-Prince, Haiti are known for their sprawling completely unplanned and 

unserviced slums. The city was hard-hit by the 2010 Haiti Earthquake, which killed an estimated 

315 000 people. The lack of building codes and poor zoning resulted in an enormous amount of 

building collapses when the earthquake struck (DesRoches, Comerio, Eberhard, Mooney, & Rix, 

2011). Additionally, the unplanned and unmapped neighbourhoods with poor mobility made it 

very difficult to initiate first responders. This example demonstrates that uncontrolled 

urbanization can exacerbate disaster risks because urban disaster resilience is partially contingent 

on building cities that are physically resilient.  

Another example of this is Dhaka, the capital of Bangladesh. Dhaka has been the focus of 

many studies on rapid urbanization in less developed countries because the city has experienced 

surging internal population growth and a concurrent movement of rural population to this major 

city. Dhaka, like much of Bangladesh, is at risk of flooding given that it is located on the 

enormous Ganges River Delta. To further exacerbate the human and infrastructure risks, new 

development appears to be encroaching on increasingly flood prone areas (Pramanik & 

Stathakis, 2015). Pramanik & Stathakis (2015) point out that land-scarcity is beginning to assert 

itself at a time when climate change is increasing the frequency and extent of floods. 
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The Oxford University Global Change Data Lab (2018) statistics presented in figure 2 

show that between 1975 and 2015 the proportion of the Chinese population that was urbanized 

increased from 17.4% to 55.5%. Using UN data (2019) to adjust for the change in total 

population over that time span, the urban population of China increased from 162 million to 750 

million people in a span of 40 years. The incredible scale of development and land conversion 

required to achieve this feat likely represents one of the single largest landscape transformations 

in human history.  

Contrast this with most developed countries, like Canada, where the process of 

urbanization has been in effect for well over a century. As a settler colonial state, the initial 

immigrant/settler population of Canada was made up primarily of rural homesteaders. At the turn 

of the 20th century, the population of Canada was 37% urban and 63% rural (Statistics Canada, 

2018). By the 2018 national census, 71.5% of the Canadian population lived in a census 

metropolitan area (CMA), a proxy for a moderately sized or major urban center. Compare this to 

1941, when only 54% of Canada’s population was urban. The urbanization of the Canadian 

population has resulted from three separate dynamics: (1) migration of rural population to urban 

areas, (2) endemic population within cities and (3) foreign migrants choosing to settle mostly in 

major cities (Caron Malenfant, Milan, Charron, & Belanger, 2007).  
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Urban Dedensification 

Throughout the academic literature that explains, analyses, and predicts ULE, urban 

population dedensification remains one of the most common themes. In public discourse, 

population growth is often erroneously claimed to be the main or only cause of urban land 

expansion (Wihbey, 2017), particularly in reference to less developed countries. Research shows 

that urban population dedensification is nearly as important of a factor as urban population 

growth in driving ULE. Literature on the subject by Günerlap et al (2019) showed that declining 

urban population density between 1970 and 2010 in most of the world was quantitatively of 

more importance in driving urban land expansion. This is illustrated most simply by their 

determination that the global urban land expansion rate held around 5% annually for the entire 

period, far exceeding the global population growth rate reported by the World Bank (2018), 

which was in a steady decline from 2% to 1.2% annually during the same 40-year timeframe. 

This dedensification phenomenon appears to be pervasive globally, regardless of the economic 

status of a country.  

These authors showed that there is a direct relationship between urban population density 

and land conversion, particularly in North America, Europe, India and China, where urban 

population densities consistently declined during the study period. Their counterfactual analysis 

showed that during their 40-year study period, declining urban population density alone resulted 

in 125 000 square kilometers being converted into urban land globally. That represents the 

urbanization of an equivalent land mass to the State of Mississippi. The dedensification of cities 

is closely tied to economic growth, which allows a growing middle class to afford less densified 

and more comfortable housing. This was the case during the booming post-war Fordist period in 
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North America (Filion & Bunting, 2015) that saw the rising primacy of the automobile and low-

density suburban housing.  

A similar pattern of urban dedensification is occurring in China as their economy grows 

(Gao, Wei, Chen, & Chen, 2014). Günerlap et al (2019) determined that Chinese cities now 

develop land at a density of roughly half the new development density in 1970. The economic 

transformation of China is the ultimate case study of massive scale rapid urbanization. A 

significant body of work researches and analyses the growth of Chinese cities and the 

urbanization of the Chinese population in the span of less than 2 generations. On the macro-

scale, urban population growth and falling development density cause urban land expansion. 

However, the lower-level driving factors that determine the forms of the urban land development 

span from geophysical to socio-economic. These smaller scale factors can ultimately determine 

the population density at which development occurs. 

Looking at the literature on Africa, it appears that present urbanisation in Africa is 

characterized by expansive sprawl and declining urban population density (Dodman, Leck, 

Rusca, & Colenbrander, 2017). This is result of rapid population growth, economic change, 

inadequate infrastructure to support higher population densities and a lack of governance 

capacity and resources to implement functional urban planning. Dodman (2017) points out that 

between 1985 and 2000, Accra’s urban land cover expanded at twice the rate of population 

growth, a similar metric to the aforementioned ULE of transitional China. Since then, population 

growth in sub-Saharan Africa has remained explosive. This highlights the concerning trend that 

cities are not developing in a way that holds or increases aggregate population density. This 

trend, which is at play in most medium to large African cities explains why sub-Sahara Africa is 

expected to have the highest rate of urbanization in the world for the coming decades. African 
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nations have a unique convergence of all four principal causes of ULE. Growth modelling by 

Angel (2011) predicted that urban lands would multiply twelvefold in Saharan Africa by 2050 

relative to the 2000 geographic extent of urbanized land area. 

 It is possible, albeit rare to see development that increases the aggregate urban density of 

a city-region. One such example is Singapore, which has a unique style of closely managed 

development and housing market regulation that has allowed the middle class to flourish in a 

globalized city-state with hard physical limitations on land availability. Singapore was forced to 

focus on densification because of rather unique geographic, economic and social factors which 

are not in play for most other city-regions. As a result of these unique conditions, Singapore is 

urbanizing in a way that produces almost no ULE. Despite the existence of rare case studies like 

Singapore, unconstrained urban land expansion is the norm throughout the world rather than the 

exception, and unfettered ULE remains widespread.  
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Economic Growth 

The literature suggests that economic growth is another driving factor of urban footprint 

growth. As cities have become the growth engines of service and manufacturing economies, they 

absorb more land and human capital from rural resource-oriented rural economies. Besides 

economic necessity, people also concentrate in cities to pursue economic opportunities associated 

with education, innovation, economic diversity, and the ability to specialize skills for niche 

industries. A prosperous urban economy also leads to the expansion of industrial land as 

businesses require more space for operations. Governments also perpetuate ULE by investing in 

public infrastructure to support the growing population and business activities. However, 

government projects are not necessarily correlated with economic growth because public 

infrastructure investment is used to stimulate a weak regional economy as well. 

One of the most powerful examples of economic growth generating ULE is the economic 

growth period of China throughout recent decades. National and subnational governments were 

pivoting toward an economic growth orientation during this time. Economic reforms drove the 

transformation of the Chinese economy at least partially through the reorientation of sub-national 

governments toward a growth paradigm, which increased pressure to urbanize large amounts of 

rural land to generate regional economic growth and rents. Gao et al (2014) attempted to develop 

a conceptual framework for the analysis of land use change during China’s famed economic 

transition. The context within which they operated was the so-called ‘triple process’: 

marketization, globalization and decentralization.  

This process of political-economic reform is the result of all three ‘processes’ working in 

conjunction. (1) Economic globalization drove the necessity of seeking comparative geographic 

advantage to produce localized economic growth, (2) marketization meant economic and 
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political pressure mounted to develop land to its ‘full’ market-determined potential and (3) 

decentralization forced local-regional governments to pivot towards development and rent 

seeking behaviour in order to bolster public finances as the national/central government off-

loaded tax collection and service provision functions on lower-level governments.  

By approving or facilitating the development of large amounts of land, they were 

allowing the economy to grow and become spatially established in the previously agrarian 

countryside. Within the political-economic framework of their analysis, it is necessary to 

consider land as a resource and as such “land use reflects the most direct reaction of mutual 

influence and interaction between the humanistic and natural subsystems.” (Gao et al. 2014) In 

this way land development was a way for China to exploit its vast land resources. The 

urbanization of raw land can increase the economic productivity of a given unit of land. This 

occurs because urban economies are more compact which a greater output per nominal unit of 

land compared to diffuse agricultural and resource activities. This creates an undeniable 

economic incentive to urbanize peri-urban lands. However, that development simultaneously 

consumes agriculturally productive lands, which is an economic trade-off. Though economic 

growth from ULE far outstrips the loss of agricultural productivity, concerns about productive 

land loss are present throughout the literature on urban growth.  

Globally, 60% of the land developed between 1970 and 2010 was formerly agriculturally 

productive (Günerlap et al, 2019). This outlines a potentially looming crisis of food security as 

many nations will begin to experience declining agricultural productivity due to climate change, 

in addition to having experienced irreversible land loss to cities over the preceding decades, 

which will exacerbate the problem. D’Amour et al (2016) determined that between 2000 and 

2030, an aggregated 3.2% of global crop land will be lost to urbanization. However, land loss is 
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variable by region, with China, Vietnam and Pakistan losing between 5-10% of their productive 

crop lands during that 30-year period. Zhang et al (2017) did a case study on the Beijing-Tianjin-

Hebei region to determine the extent of ecosystem services losses caused by ULE. For their 

analysis they considered food production, carbon storage, water retention and air purification as 

the four primary components of ecosystem services rendered. According to their analysis and 

forecast model, the urbanization of ecosystem services producing lands is the cause of upwards 

of 84% and possibly as much as 97% of total ecosystem service losses for the entire region 

between 2013 and 2040. This demonstrates to which point urbanization is an economic trade-off 

against agricultural and ecosystems services productivity. 

Fully 80% of the predicted global loss is set to occur in Asia and Africa, continents that 

are developing at a rapid pace and have many associated growing pains (D’amour et al, 2016). 

The researchers did however note a compensatory effect where the globalized food system may 

help to soften the blow for countries that see the largest losses of productivity. They also noted 

that sub-Saharan African countries have a large agricultural productivity gap which could be 

closed by extensification (cropland expansion) and integrating agricultural technology and better 

land management to intensify use of existing croplands. However, this unexploited agricultural 

productivity does not exist in in South and Southeast Asia where almost all suitable land is 

already under intensified multi-crop cultivation.  

In the Canadian context, the problem of high-productivity agricultural land loss is 

particularly acute because early settlements were located according to proximity to productive 

farmlands and waterways. As these settlements grew and eventually urbanized, they became 

modern Canadian cities that paved over some of the most productive agricultural lands in Canada 

(Statistics Canada, 2005). Fortunately, the forms of peripheral/suburban development have 
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evolved towards slightly higher density in many cities (Millward, 2008) as planning departments 

have had to acknowledge their fiduciary responsibility to taxpayers because very low-density 

development is a net fiscal drain on municipalities (Goodman, 2019). It is yet to be seen if a 

refocus on dense forms of development would be enough to reduce productive farmland 

consuming ULE. 

 

Government Policy 

The literature suggests that governments policy is one of the primary drivers of ULE 

because it dictates land management jurisdiction and high level housing policy that can stimulate 

the housing market. Despite this, government policy is simultaneously one of the most effective 

tools to control ULE. On a global scale, runaway urbanization is having a major impact on arable 

farmlands and natural areas as cities continue to expand their spatial footprint (Ali, 2008). For 

this reason, continual development on the peripheries of cities can have major implications for 

food security, regional biodiversity and disaster resilience (Tan, Li, Xie, & Lu, 2005). These are 

important considerations that can be effectively addressed by government policy. 

Stelter and Artibise (1986) expounded on the political conditions that allowed North 

American cities to annex urban-rural fringe lands almost indefinitely through most of the 20th 

century. The appetite for annexation was high in the United States well before Canadian cities 

began booming around the turn of the 20th century. American cities had a significant lead on 

urban land expansion because of greater population numbers and earlier population of mid-

western and western states. Central city governments and business interests were often on board 

with annexations because they believed that ‘bigger was better’. Independent surrounding 

communities were willing to be absorbed into the larger city’s political apparatus, typically in 
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exchange for reductions in taxes, improved civic infrastructure and in some cases to reduce the 

influence of a meddling local political class.  

By pursuing large land annexations, American cities were able to somewhat set a 

precedent of how Canadian cities would access large quantities of developable land and 

peripheral communities into central cities. Canadian cities were quick to follow suit as soon as 

Canadian urban populations started booming. The formation of critical mass in cities was viewed 

as a way to assert regional dominance to attract additional population and economic growth. This 

virtuous cycle of growth and annexation was almost uniformly supported by civic and business 

leaders who were trying to engineer urban and economic growth. The cycle of urban growth and 

expansion was fuelled by political conditions that allowed cities to annex essentially unlimited 

quantities of greenfield lands into the jurisdiction.  

Within the context of North American suburbanization and urban political systems, 

consolidation of city-regions through annexation was an important growth tool used to accelerate 

the provision of municipal services to suburbs in a way that was more cost effective than 

remaining self-supporting villages (McCarthy, 1986). Improvements in public infrastructure that 

accompanied annexations and tax reductions in the suburbs meant that North American cities 

were ripe for urban land expansion into greenfield lands. During this time, the single detached 

home increasingly found its place in North American culture, eventually to be touted as the 

illustrious ‘American Dream’.  

McCarthy (1986) notes that the annexation paradigm shifted eventually. The major 

Canadian growth centers of the 19th and 20th centuries, Montreal, Toronto, Winnipeg and 

Vancouver have effectively ceased annexation in the modern era and become shut-in by 

surrounding suburban communities. These surrounding communities are now the primary source 
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of regional ULE for these city-regions that have opted to embrace the idea of metropolitan 

governments instead of annexation to facilitate regional cooperation and integration.  

In some cases, greenbelting has emerged as a provincial/state level response to unfettered 

ULE and concerns about losses of highly productive agricultural lands. In Canada, the British 

Columbia and Ontario provincial governments have implemented greenbelts to reign in urban 

sprawl (Ali, 2008) in the Lower Fraser Valley and the Greater Toronto Area (GTA), respectively. 

Ali (2008) points out that thus far the land protections have worked in the GTA, however they 

have caused an unintended increase in the value of the existing housing stock by limiting the 

developable land supply. To prevent this market-effect, local governments would need to 

intensify land use of the existing urbanized area or insist on new developments being high-

density to accommodate more population and meet housing demand with a smaller supply of 

land.  

However, putting a dent in housing supply is not always the result of implementing 

greenbelts. In Seattle, the implementation of an urban growth boundary (UGB) improved 

housing affordability for low-income groups because the city administration allocated a greater 

portion of redevelopment permits to multi-family units (Ali, 2008). Such an initiative would also 

serve to re-densify the inner city, a stated goal of many modern planning departments and 

academics. Greenbelts have emerged as a practical response to ULE and present a contrast to the 

government policies that have accelerated ULE throughout the urban history of Canada. It is yet 

to be seen how resilient these policies are against the vested interests of land developers. 

Housing policy is a tool leveraged by government to create economic growth by 

expanding demand for new housing. Government policy in Canada is used to encourage home 

ownership by facilitating mortgage loans through government-backed loan insurance, equity 
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sharing and tax incentives for homeowners. Pro-home ownership policies are a testament to the 

degree to which the Canadian economy is structured around land development, construction and 

the expansion of housing. However, peripheral urban development does respond to a market 

demand for lower density forms of housing and helps to accommodate a growing population. It 

is also worth pointing out that suburban neighbourhoods are well suited for families that prefer 

not to live in high-density housing and cannot afford low density residences in gentrified inner or 

mid-city neighbourhoods. Home ownership has also proven to be a useful tool for wealth 

creation in Canada, particularly for immigrant families that often come with little existing 

financial resources (Simone & Walks, 2019). Home ownership can also create strong 

communities because residents are personally invested in the long-term success of their 

neighbourhoods.  

 

ULE in Alberta City-Regions 

Population Growth. Population growth in Alberta has proven to be one of the highest in 

the nation, which has fuelled the spatial expansion of cities. The study area for the research that 

will follow this literature review is Calgary specifically, however the Edmonton-Calgary corridor 

is important in the Canadian population context. These twin cities are linked by a major 

economic and transportation corridor. The Edmonton-Calgary corridor has a population of over 3 

million people, with 1 366 000 and 1 498 000 in the Edmonton and Calgary census regions 

(divisions #11 and #6) respectively. During the 1997-2001 inter-census period, Calgary 

experienced the most rapid growth in the nation with an increase of 15.8%, and Edmonton 

trailing with a considerable population increase of 8.7% (Statistics Canada, 2002). This 

population boom was thanks in part to a rapidly expanding oil and gas sector that was creating 
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large direct and indirect employment growth. To house this growing population, the City of 

Calgary expanded rapidly. It is perhaps for this reason that Edmonton and Calgary have 

somewhat of a reputation for having uncontrollable suburban growth.  

The Edmonton-Calgary corridor is considered one of the four concentrated urban growth 

regions in Canada, with the other three being the extended Golden Horseshoe in southern 

Ontario, the Montreal region and the combined Lower Mainland and south Vancouver Island. 

Between the 1997 and 2001 national census, these four regions accounted for nearly all the 

population growth in Canada at 7.6%, while all other regions combined accounted for an almost 

negligible population growth of 0.5% (Statistics Canada, 2002). It is telling that the four major 

city-regions of Canada are essentially creating or absorbing all the population growth in Canada.  

Urban Dedensification. Many cities are notorious for their unconstrained low-density 

suburbanization. North American cities have had a reputation for this since the post-war era 

ushered in massive scale suburbanization of cities. Low-density housing development on the 

peripheries of cities drove down the population density of north American cities and caused their 

urban footprints to expand significantly. The two major cities in Alberta, Edmonton and Calgary, 

both develop radially and swallow up enormous amounts of exurban, greenfield and 

agriculturally productive lands for low density residential and commercial developments. This 

suburban development is largely unconstrained by municipal planning departments that have 

rarely intervened to increase the density of proposed suburban developments. Furthermore, 

development is occurring at the fastest possible rate given market demand, with little regard for 

environmental, fiscal or social considerations. Though recently, the two cities have been working 

towards increasing density in mature and developing neighbourhoods (City of Edmonton, 2017) 
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to improve the net-negative fiscal effects that suburbs have on the municipal purse (Goodman, 

2019). 

Economic growth. Alberta has experienced rapid (albert fluctuating) economic growth, 

which has factored into the expansion of residential areas, industrial and retail centres, and public 

infrastructure to support the growing population and economic activity. The growth of the urban 

population and the dedensification of cities can also be viewed as a function of economic 

expansion and transition. As cities are the primary centres of economic activity in Canada, they 

draw in population seeking economic opportunities, which increases demand for housing. 

Additionally, the wealth created by the strong economy of a city becomes fuel for low-density 

housing development which can result in the dedensification of the city. As the middle class grew 

in Canada, so too did the demand for low density housing, particularly in the post-war era, which 

saw sustained economic growth and the emergence of seemingly limitless demand for family-

oriented housing because of the baby boom after the World War II.  

Beyond strictly looking at residential development led ULE, urban economic growth 

causes the expansion of commercial and industrial districts on the edge of cities, which is also an 

important contributor to ULE. Davies & Baxter (1997) explored the commercial composition of 

one of Calgary’s major highway oriented commercial ribbons over a 30-year period via analysis 

methods derived from urban factorial ecology. Besides the analytic results of their study, they 

pointed out that the emergence of the highly land-inefficient urban form they call a highway-

oriented ribbon was almost entirely codependent on the emergence of automobile-oriented 

suburbs in southern Calgary. The massive growth in the south of Calgary, which constituted 

almost 50% of the city’s urban land growth during that epoch, drove a commensurate demand for 

concentrated roadside commercial, professional and retail services. This form of commercial 
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development is contrasted to older inner-city and downtown commercial districts because of the 

necessity for massive land-inefficient surface parking.  

Though the Macleod Trail area lacked any comprehensive urban planning, the city 

administration did intervene to make sure large portions of land were allocated to surface 

parking, something that the city considered essential to ensure the success of the commercial 

district and prevent congestion from effecting MacLeod Trail directly. Though Macleod Trail 

represents only one case study, the development trend is clear in North America, these 

commercial and retail districts are part-and-parcel of residential suburbanization because they 

fulfill the consumer demand for services that are largely unavailable in residential-only 

neighbourhoods. This urban development modality builds on the land-inefficient trend of modern 

urbanization that is oriented around consumerism and the primacy of the personal automobile. 

This example also outlines the extent to which land inefficient commercial districts and 

residential development prompted by economic growth contribute to ULE.  

Government Policy. Edmonton and Calgary have continued to expand their urbanized 

footprints and legal city limits in the modern era as suburban growth very much remains the 

development paradigm on the western Canadian prairies. This is somewhat unique compared to 

the other major city-regions in Canada, which McCarthy (1986) described as having central 

cities shut-in by outlying independent suburban communities. Edmonton is partially shut-in by 

the suburban communities of St. Albert, Sherwood park and the Enoch Cree Nation Reserve but 

continues to pursue annexations of surrounding county lands. The 2019 annexation of lands up to 

Beaumont city limits and the northern edge of the Edmonton International Airport demonstrate 

that the city administration has continued to pursue expansion of their developable land supply. 

The periphery of Calgary is almost entirely available for annexation as needed for development, 
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other than the Tsuu T’ina Nation Reserve which borders the central-west section of the city. 

Calgary has consistently annexed new lands as needed for the development of low-density 

suburbs. 

Cities in Alberta have also likely had ULE driven by federal housing policies that 

encourage home ownership. Examples of this include the Home Buyers Plan which allows home 

purchasers to access retirement savings for a down payment, CMHC mortgage insurance that 

helps banks insure mortgages (thereby incentivizing lending) and the newly minted First-Time 

Home Buyer Incentive through which the CMHC take on an equity share in the purchase 

(Canadian Mortage and Housing Corporation, 2019). Though we will not speculate on the 

effectiveness of these measures, they have likely had some macroeconomic impact on the 

Canadian housing market and in Calgary as well. 

Local government planning also has an impact on ULE. Municipal and provincial 

governments invest in public infrastructures that facilitate the geographic expansion of cities. 

The Anthony Henday and Stoney Trail ring roads are examples of this. These road and utility 

corridors were decades in the making and will facilitate the expansion of the cities for decades to 

come. In both cases suburban development has already ‘jumped’ the corridors as neighbourhoods 

have sprung-up outside of the ring roads. These corridors are roughly half a kilometer wide, 

which directly expanded the cities. They are also facilitating the secondary expansion of the 

cities by facilitating commuting from the suburbs and providing enhanced mobility for economic 

activities.  
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Qualitative ULE Methods 

Though the literature has outlined 4 principal drivers of ULE, very few researchers try to 

disentangle to what degree each of the drivers is operative for a given urban region at given time. 

Because of the individual complexity and the way in which these factors interact with one 

another, factor analysis of ULE drivers is incredibly difficult and beyond the scope of this 

project. The aim of this section is to delve into existing methods of ULE measurement and 

forecasting to attain a better understanding of why only incremental methodological 

improvement has occurred in the field up until recently, and why cloud geo-computing represents 

a shift in how geospatial researchers can measure aggregate ULE.   

 

ULE Modelling 

Data Sources. There are three common data sources that are typically used to identify the 

built-up extent of cities. These three data sources are remotely sensed images, vector geospatial 

data and spatialized census data.  

The first and foremost data type is remotely sensed images, which can be classified using 

various spectral, statistical or machine learning based methodologies. Remotely sensed spectral 

signatures, typically in the visual or near-visual spectrum, are expressed as pixel values and used 

to identify the extent of urbanization in a city-region using image classification software. This 

method was successfully deployed by Pramanik & Stathakis (2015) using open-access Landsat 

imagery to identify the urbanized land area of Dhaka, Bangladesh. They pointed out that using 

satellite imagery was well suited to their research because the Dhaka city-region lacks 

formalized planning to control, direct or measure the rapid urban footprint growth that is 

occurring. This procedure requires minimal input datasets which are typically sourced from 
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reliable national satellite imagery databanks and not local authorities or city/regional 

governments, which often do not have these types of data available.  

The NASA/USGS Landsat program is one of the leading earth observation programs, 

with data going back to 1972 when Landsat 1 was launched. The United States Geological 

Survey (USGS) directly disseminates Landsat imagery for free via its EarthExplorer interface. 

However, the volume of data in Landsat image tiles can be problematic for desktop hardware 

configurations, particularly if researchers are working with a multi-tile sized study area. Cloud 

computing has recently helped researchers overcome this scaling limitation. By storing the entire 

multi-petabyte Landsat archive at data centers, along with many other RS imagery collections 

and spatial datasets, researchers can program intensive data processing tasks to be performed at 

the data centers and subsequently download only post-processed or simplified output datasets.  

Secondly, vector-based geospatial datasets from municipal archives, property zoning or 

surveying databanks can be used to identify developed properties as well as undeveloped lands 

within city limits. In many cases cities annex fringe land decades ahead of development, which 

means that the properties slatted for future development are within the city administrations 

jurisdiction long before being urbanized. These data sets have a high fidelity because cities 

typically maintain them on an ongoing basis as land-use evolves spatially within city limits. 

These types of high-value datasets exist as a result of tightly managed permitting processes and 

therefore are more available where planning departments are well established with GIS enabled 

data-systems. In other words, extensive urban vector datasets are more commonly available from 

city/regional administrations in developed countries with long-established systems of urban 

planning and histories of government-led land management.  
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Many city-regions in developing countries are trying to close the GIS capacity gap 

because of the necessity of better planning for sustainable urban growth as well as ensuring cities 

are well oriented towards economic growth, as it becomes apparent that cities are going to be the 

major economic drivers of the 21st century. However, it is difficult to build out high-quality 

vector and surveyed datasets retroactively, because of the high capital and labour cost of the 

effort as well as the difficulty of getting buy-in from stakeholders who are used to the status quo 

of loose zoning and land management. More established government GIS departments can keep 

their costs down by maintaining and updating vector dataset on an ongoing basis as internal 

redevelopment and fringe city building occurs.  

Vector datasets can also be obtained from non-governmental geospatial data banks. These 

are usually the post-processed data products from the image classification process described in 

the above remote sensing section. Because of how commonplace and low-cost the process of 

image classification is, there are many ready-for-use classified vector data and map products 

available. However, a lack of standard classification practices and data crunching parameters 

means these can have varying fidelity, resolution and the input layers can be quickly outdated by 

the pace of new data production and physical landscape changes. Recent research by Liu et al 

(2018) demonstrated that the accuracy and resolution of five ready-for-use global-scale urban 

land extent vector datasets varied wildly and attempted to create a higher resolution product 

using cutting edge software-hardware architectures. 

Lastly, spatialized census data can be used to identify tracts of land with higher 

population densities, which would indicate urbanization. With census data, the granularity can 

become important as most of the data is spatially aggregated to achieve mandated levels of 

anonymity on a scalar basis. Multi-level census data has reduced demographic datapoints as you 
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approach smaller census tracts. Conversely, as tracts become larger, data aggregation can cause 

spatial distortion in terms of value distributions. For example, a large census tract could be 

spatially made up of 75% unpopulated greenfield land and 25% high-density residential in the 

real world, but the aggregated data for that polygon would represent a low population density for 

the census tract because of spatial averaging. The way that census tracts are determined and 

spatially modified over time can also cause issues with data continuity and interfere with time-

series analysis methods that require input spatial data to remain constant over the analysis 

periods. However, in some cases creative data aggregation and interpolation can be used to 

overcome this deficiency of spatial census data.  

Remote Sensing Basics. Because Remote Sensing (RS) is one of the most powerful, 

reproducible, widely used method for urban land detection. RS data will be used for the 

modeling project that follows this literature review. Since the early days of remote sensing, it has 

been used as a tool for identifying the impact of human development on the surface of the earth. 

Early satellite images changed society’s perception of our ability to impact our planetary 

ecosystem by showing the global geophysical extent of human development for the first time. 

The ever-growing open-source cataloging of remotely sensed images has become a powerful tool 

for not only instantaneous geographic measurements, but also temporal change measurement. 

The capacity for time-series analysis is improving as databanks now have considerable temporal 

depth and new images are added consistently.  

Spatial Modeling. Determining the extent to which ULE transformed significant 

amounts of land globally or regionally is a worthwhile endeavour because the trend is clear that 

ULE will continue to occur as the modern development roadmap remains firmly entrenched in 

most parts of the world. Many methods have been applied to determine the extent of urban land 
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footprints, but none as much as the classification of remotely sensed satellite imagery. Remotely 

sensed image archives have become more accessible, temporally richer and image resolutions 

have improved as instruments have been upgraded. GIS has been used to model the urbanized 

footprint of cities since its inception, however the technologies that merge RS raster images with 

traditionally vector-based GIS platforms have caused somewhat of a consolidation of the two 

fields. Combining the strong suits of GIS and image classification allows geospatial researchers 

to analyze these rich datasets. Much of the value of the data comes from the temporality of the 

datasets, which allows researchers to perform time-series analysis. 

Spatial Forecasting. From modeling and historical data, some researchers have 

attempted to create ULE forecasts. Spatial forecasting is a challenging task that typically requires 

temporally rich datasets and careful model calibration and/or parameterization. The development 

of more advanced urban growth modeling methodologies coincided with advances in geographic 

information sciences and remote sensing and data storage technology (Pramanik & Stathakis, 

2015). A plethora of urban growth modeling methodologies now exist that explore various 

aspects of urban transformation and ULE. Those same researchers pointed to other significant 

research that used artificial neural networks, statistical models, multi-agent models and fractal 

models to analyse and predict ULE.  

Cellular Automata. Among the urban growth modeling methodologies that Pramanik & 

Stathakis outlined, they chose to utilize a self-modifying cellular automata model in their ULE 

forecast of Dhaka. They argued that among these dynamic models, cellular automata were the 

strongest because of their close developmental ties to remote sensing and geographic information 

systems. Cellular models are spatially constructed from grids of raster cells. These raster cells 

can have values ranging from discrete or dynamic identifiers. Simple binaries can denote the 
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potential of a cell for future development (e.g. 1 = developable greenfield, 0 = undevelopable 

waterbody) and dynamic identifiers can be used to build out more detailed data. The dynamic 

identifiers can outline suitability or probability-based metrics of developability. For example, 

cells could be identified according to their average terrain slope. This datapoint could be used by 

researchers or urban planners trying to build out algorithms that allow certain types of land 

development within a specified slope range. 

 Spatio-Physical Limits and Stimulants. Developing limitation parameters on a spatial 

forecast model is important for producing accurate and credible forecasting because not 

accounting for heterogenous geographic factors would constitute a major oversight. In order to 

develop their forecast for the City of Dhaka, Pramanik & Stathakis (2015) input spatial datasets 

into the SLEUTH modeling software developed by Project Gigalopolis. Clarke (2000) 

hypothesized that “[urban settlements are] intensely impacting land, atmospheric, and hydrologic 

resources, urban dynamics has now surpassed the regional scale of megalopolis and must now be 

considered as a continental and global scale phenomenon”. The acronym SLEUTH is used to 

identify factors that influence the location and pace of land development: slope, land-use, 

exclusion, urban extension, transportation and hillshade model. Their system includes 

transportation infrastructure in the model inputs because of the observable importance of 

connectivity to development, whereby higher connectivity equates to higher priority in urban 

development sequencing.  

 Global ULE Forecast. Angel et al (2011) developed a global ULE forecast for the period 

2000-2050. To achieve a global full coverage forecast they used the Mod500 global urban land 

cover dataset which at the time was the “best of eight satellite-based global maps of urban land 

cover”. Liu et al (2018) would later create an urban land-use classification methodology that was 
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globally scalable and drove the resolution up to 30m (NUACI – Landsat 5 TM TOA reflectance) 

from 500m per pixel (Mod500/Modis 500m). The global forecast that Angel et al (2011) 

developed showed that in the medium urbanization case, urban land cover in developing 

countries would increase from 300 000 square kilometers in the year 2000 to 1 200 000 in 2050, 

a threefold increase.  

To predict the rate of global ULE rates, these authors relied on previous research that 

used geospatial methods to determine the historical rate of urban density decline by region on a 

global scale (Angel S. , Parent, Civco, & Blei, 2010). That research informed their low, medium 

and high annual urban density decline cases, which were 0%, 1% and 2% respectively. The 

authors pointed out that of the three cases, the high case was the global average from 1990 to 

2000, the medium case was the long-term global average from the twentieth century and the low 

case of 0% density decline was observed in the United States throughout the 1990s. This points 

to the likelihood that the high urban land growth case would come to fruition based on the 

current global trend of dedensification outside of fully developed economies.  

 

Cloud Geo-computation 

Google Earth Engine. As a computational task, the analysis of remotely sensed images 

on a large scale requires powerful computers for data crunching and lots of memory to host the 

enormous quantities of pixel data remotely sensed images. As the number of satellites, frequency 

of image capture and resolution of remote sensing instruments have increased consistently, so too 

have the requirement to have more powerful computers to extract the maximum value from the 

datasets. Recently, the capacity problem of the desktop workstation configuration has been 

circumnavigated by innovations in cloud computing, particularly at Google Earth.  
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Google Earth Engine (GEE) is a free command-based platform for researchers to use 

cloud computing to access the extensive library of satellite data housed at Google Earth data 

centers and harness their parallel processing infrastructure. GEE can be used to perform analyses 

that are simply not possible on stand alone desktop workstations. Though global scale analyses 

existed previously, such as Angel et al (2011), this technology has given rise to the possibility of 

global scale analysis at high spatial resolutions.  

Google Earth Engine offers an Application Programing Interface (API) that utilises the 

Javascript programming language for writing command line scripts to be processed at Google 

data centres. The API is the native platform for accessing GEE, but for users who are more fluent 

in Python, an Earth Engine API is installed by default in the Python-based Google Colab 

(Colaboratory), which is a Google hosted version of the open-source project Jupyter Notebooks. 

Machine Learning/AI. It is important to distinguish between land-cover and land-use. 

Land-cover is the less complicated of the two, given that it can be obtained simply by analysis of 

the spectral signature of individual pixels. Analysing land-cover determines the composition of 

the surface material (e.g. forest canopy, pavement, grassland, waterbody, etc). By contrast, land-

use accounts for the broader context of land-cover (surface material), but also how it relates 

spatially to other materials and the spatial arrangement/geometry of the objects themselves 

(Vernburg, van de Steeg, Veldkamp, & Willemen, 2009) in order to determine more specific, use-

based classifications. For example, a pixel could have a land-cover classification of forest but be 

in an inner-city park. The greater context of land-use would capture the spatial properties 

surrounding the forest pixel and classify the land-use of this pixel as urban or be precise enough 

to classify it as a park. In figure 3, it is virtually impossible to determine the land-use feature 

(road) according to the spectral signatures of the pixels alone.  
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Figure 1. Land-use is difficult to determine according to pixel signatures (left), more complex image 

recognition is required. (Google Earth, 2019) 

The process of determining land-use is computationally intensive and relies on complex 

predictive models, such as deep learning/deep neural networks (DNN). The utilisation of cloud 

computing can address the problem of computational intensity, which explains why much recent 

research relying on land-use classification merges the cloud computing of GEE with the Machine 

Learning protocols built into the TensorFlow software library, which some have called the Earth 

Engine of machine learning.  

Cloud Geo-computing. Early research by Hansen et al (2013) in geospatial cloud 

computing demonstrated that the Google’s data centre infrastructure could be harnessed to make 

the first comprehensive global assessment of decadal forest cover change (2000-2012) at a high 

resolution of 30 meters. Given current hardware constraints on desktop-based geo-computation, 

it was previously impossible for researchers to do this level of analysis. Though the project 

concept and principles of image analysis are straightforward, no researchers had yet been able to 

do high-resolution forest cover analysis at more than a sample scale. The alternative was also 

possible, global coverage albeit at a low spatial resolution.  

The importance of being able to do global high-resolution analysis without field 

researchers or support provided by government organizations can hardly be overstated. Hansen et 

al (2013) pointed out that among the nations their analysis highlighted as experiencing intense 

forest cover loss, only Brazil provided annual data for forest cover change. Political and 
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economic motivations are standing in the way of many governments creating and releasing data 

that would incriminate them as abetting large-scale forest loss or other environmental 

degradation. Though that research did not look at ULE, the methodology applied is very close to 

what would be used to measure urban land change over time. The primary distinction is that 

different spectral signatures will be used to different types of landscapes. 

  The capacity to do large scale and high-resolution image analysis constitutes a paradigm 

shift in geospatial research. The availability of cloud geo-computing applications to researchers 

will also likely drive a consolidation of the heterogenous methodologies used in ULE research. 

Unfortunately, the ULE field appears to lack formalization or standardization that would allow 

the results of ULE studies to be more easily incorporated into discourses about land loss and 

urbanization controls. As the field matures, more standardized metrics will emerge. The addition 

of this new technology should accelerate that maturation and result in more efficient and 

enlightening ULE research. This combined with the integration with machine learning based 

image recognition will allow researchers to move beyond spectral based models. 
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Project Description 

This project seeks to determine the pace at which linear ULE has occurred over time in 

the City of Calgary region, which is well known for unfettered suburban development. A 

combined remotely sensed image archive classification and GIS-based spatio-temporal analysis 

methodology will be applied to observe the pattern of linear outward growth of Calgary and the 

pace at which this outward movement is accelerating, decelerating or stable over time. This 

information about the change of linear outward growth is rather unique in that few researchers 

have approached the urban land expansion problem from the linear, rather than surface areal 

standpoint.  

The goal of this research is to develop a methodology for determining linear ULE 

(LULE), breaking for the norm of using surficial/areal ULE measurement of urban sprawl. This 

research is using the cloud computing platform Google Earth Engine for data access and image 

classification before migrating into conventional GIS software (ArcGIS Pro) for vector-based 

time-series analysis. The relevance of this research is that the method provides a smaller-scale 

and more nuanced analysis, whereby individual plots of raw lands can be considered in terms of 

time-to-development. Surficial measurement and forecasting are more useful for calculating 

aggregate lands loss, which is relevant to research contexts such as arable lands loss. 

This research will provide insight into the possibility of measuring the linear outward rate 

of ULE, using Calgary as a case study. The LULE metric could inform development planning 

and give prospective land developers and investors an understanding of the amount of time it 

would take to see a capital return on their land investment. This type of information could be 

applicable to urban and regional planning as well a business decision making. 
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Methods 

Data Access & Preparation 

The base data used for this project was acquired from the Landsat Tier 1 (“T1”) image 

collection. The USGS preprocesses data to remove some of the complex data cleaning, refining 

and classification workload from researchers. Several different preprocessing methodologies are 

applied to the raw satellite images, which results in the publication of a range of data tiers and 

spectral information formats. Tier 1 data was selected because “Landsat scenes with the highest 

available data quality are placed into Tier 1 and are considered suitable for time-series analysis.” 

(United States Geological Survey, 2018)  

Within the issued T1 collections, the Surface Reflectance (T1_SR) dataset was chosen for 

each of Landsat 5, 7 and 8. Note that there is no Landsat 6 because in 1993 the satellite failed to 

reach orbit when its fuel-engine connection failed, preventing it from maintaining altitude 

(NASA, 2020). Fortunately, Landsat 5 remained operational well beyond its estimated lifetime, 

preventing the expected data gap when L6 crashed out of orbit.  

Surface reflectance images are most suitable for this research because the data is 

atmospherically calibrated to display the true reflectance of the surface of the earth (L3Harris 

Geospatial, 2013), which is ideal for identifying land cover types according to their discrete 

spectral reflectance characteristics. All other ancillary vector datasets were constructed from 

scratch in Google Earth Engine or ArcGIS Pro or acquired from municipal and provincial open 

data banks.  
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Filtering & Mosaicking Image Collections 

Image collections were separately filtered to create one dataset every five years between 

1985 and 2020. These filtered collections were inclusive of image panes from a +/- one-year 

timeframe (3 years total). The 2020 dataset included all 2019 data in its date inclusion range 

through to Oct 02, 2020. 1985/1990/1995, 2000/2005/2010 and 2015/2020 were obtained 

respectively from Landsat 5, 7 and 8 based on which satellite was operational at the time. Across 

these three satellite image collections, the data has consistent formatting, encoding and 

resolution, meaning that all the javascripts used to access and prepare the first dataset were easily 

replicable across all the periods. Additionally, clouds and cloud shadows are labelled in a pixel 

quality (“pixel_qa”) band which was used for pixel masking. A central point coordinate was used 

near downtown Calgary to create circular polygon with a 40-kilometer radius and collections 

were mosaiced and clipped to this geographic extent. 

 

Indexing and Band Analysis 

The Built-Up Index (BUI) method proposed by Zha et al (2003) and later retested by He 

et al (2010) was used. This approach relies on the algebraic fusion of NDVI and NDBI indexes 

and results in a “semi-automatic” segmentation because the resulting final dataset is a binary 

BUI raster layer, with the two binary classes being urban or non-urban land cover. The band 

math to achieve this exploits the differences in surface reflectance between red, near infrared and 

short-wave infrared for vegetated and impervious surfaces. The band math is as follows: 

𝑁𝐷𝑉𝐼𝑐 =
𝑁𝐼𝑅−𝑅𝑒𝑑

𝑁𝐼𝑅+𝑅𝑒𝑑
       (1) 

Firstly, a normalized difference vegetation index (NDVI) is calculated for the study area 

and inputted as a new band called “NDVIc”. Where c represents the continuous format of DN 
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values. Because Landsat has a relatively high resolution (30m), a low-pass 5x5 convolution filter 

was applied on the NDVIc band to remove outlying high-frequency values and smooth the 

images.  

𝑁𝐷𝐵𝐼𝑐 =
𝑆𝑊𝐼𝑅−𝑁𝐼𝑅

𝑆𝑊𝐼𝑅+𝑁𝐼𝑅
       (2) 

Secondly, the normalized different built-up index (NDBI) was computed as an additional 

band for the study area. The band was convolved with the same 5x5 low-pass filter to smooth out 

the DN values.  

In order to recode to continuous NDVI and NDBI indexes into binaries, DN thresholds 

needed to be determined for segmentation. The binary attribute represents the discrete urban land 

extent for each image. Vector sample sites were established for different land-cover types and 

histograms were analysed to determine optimal thresholds for the binary separation of urban and 

non-urban land according to the spatial distribution of DN values. Sample sites consisted of 4 

roughly equal sized polygons that covered residential, industrial, agriculture and forest. The 

residential and industrial samples were combined to create an urban land sample and the 

agriculture and forest polygons were combined to create the non-urban land sample.  

Firstly, histograms were generated for before and after convolution to determine if this 

approach was effective and necessary. Histogram DNs were counted according to the pixel 

content of the two combined sample sites. Results showed the convolution method was effective 

in improving land cover distinguishability withing the histogram distributions, see figures 7 – 8. 

Analysis of the convoluted DN histograms for the 2015 dataset was then used to determine an 

appropriate threshold for recoding the NDVIc into a binary NDVIb layer where 0 = urban and 1 

= non-urban. The same process of threshold determination was repeated for the NDBI band by 
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viewing histogram DN distributions. The NDBIc was then also recoded into a binary band as 

NDBIb where DNs were valued at 0 = non-urban and 1 = urban. 

When this process was repeated for the other images it became apparent that the DN 

thresholds determined by the initial 2015 sampling could not be reused for all the composite 

images because of spectral variations for the different datasets. This was likely due to seasonality 

in the remotely sensed data. This occurs because not all pixels are captured at the same point in 

the vegetation growth cycle because Landsat captures images only every 16 days. The 

histograms were viewed for each period to determine a starting DN threshold that was manually 

calibrated by the analyst using the RGB image as an underlay and the binary layers as an overlay. 

The calibrated DN thresholds for each dataset are found in table 1 in the results section. 

𝐵𝑈𝐼𝑏 = 𝑁𝐷𝐵𝐼𝑏 − 𝑁𝐷𝑉𝐼𝑏     (3) 

The BUIb band was calculated by subtracting the NDVIb band from the NDBIb band. 

The combination of these two datasets helped further enhance the classification power of the 

band math by increasing the data contrast between vegetation and impervious surfaces. The 

enhancement effect is a result of NDVI and NDBI capturing the opposite land cover types, but 

with different effectiveness. By fusing these two classifiers, the NDVI which is very accurate, 

sets a spatial limitation on the NBDI band which typically overestimates urban land. Some of 

this discrepancy in effectiveness is surely because a greenest pixel composite was used, which 

favours the application of normalized difference vegetation classification.  

 The raster images were exported as multiband geotiff files into google drive and 

subsequently migrated into ArcGIS Pro catalog. Each of the 8 study periods had 2 images of the 

study area. The two image exports were (1) an unconvoluted multiband RGB image for visual 

reference purposes and (2) a single band BUIb raster image. Additionally, the YYC centroid 
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points used for developing the study area buffers were exported to assist with the creation of 

ancillary spatial datasets for the spatial time-series analysis in ArcGIS. 

 

ULE Data Vectorization and Editing 

 Each of the 8 BUIb raster images were converted to polygons using the Raster to Polygon 

tool. Polygons with a size less than or equal to 25 hectares were deleted by applying Select by 

Attribute and deleting according to the selection. The same process was repeated to delete 

polygons where the BUIb score was not equal to 1. The Aggregate Polygons tool was used to 

simplify and consolidate the polygons (parameters: aggregation distance = 1km, minimum area = 

25ha and min hole size = 75ha). The resulting aggregated polygons were visually inspected for 

errors of omission and the pre-aggregated dataset was manually edited and reaggregated to solve 

for the errors in the 2020 dataset.  

Parks and open space shapefiles were collected for major communities in the study area 

and fused into a single feature class (Town of Okotoks, 2020) (Town of Cochrane, 2020) (City of 

Airdrie, 2018) (City of Chestermere, 2020) (City of Calgary, 2020) (City of Edmonton, 2019) 

(Government of Alberta, 2017). The merged parks and open spaces polygons were clipped from 

the aggregated 2020 polygon to exclude parks areas. The parks deletion process only needed to 

be performed on the 2020 dataset as it would be inadvertently incorporated into all earlier 

datasets through clipping. Each dataset was clipped (Clip tool) according to the UL extent of the 

five-year newer UL extent polygon. This action was performed to cut down on spatial errors of 

commission based to the assumption that if a piece of land is undeveloped in the 5-years newer 

dataset, it would have been undeveloped in all earlier study periods as well. Each of the pre-2020 
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images were (1) thinned (BUIb = 1, Hectares > 25), (2) aggregated and (3) clipped to the extent 

of the next newest study period.  

 The earliest (1985) dataset was manually verified and edited to maximize fidelity. After 

the final manual editing, it was reaggregated and the regional parks file was clipped again to 

ensure edits did not overlap the parks omissions. From 1985 forward, each dataset was (1) 

merged into the next newest dataset and the new dataset was (2) dissolved to remove concurrent 

polygons. This action ensured that there were no instances that represented degrowth, which 

would have been an error of omission, based to the assumption that if a plot of land was 

classified as urban 5 years earlier, it would have remained urbanized in all following datasets.  

 

Radial Polyline Fan 

The following is the multi-step process to produce a 360-degree radial polyline fan with a 40-

kilometer extent around the study area centroid point. A 40-kilometer polygon around the 

centroid points was created using the Buffer tool. The Feature to Line tool was used to generate a 

circular polyline on the buffer perimeter. An empty feature class was created in the project 

geodatabase to house the 360 radial endpoints. Within the Editor window the Create Features 

mode was applied to the empty feature class. The Create Points Along Line tool was 

parameterized to create 359 points plus an additional point at the start of the polyline. The Add 

XY Coordinates tool was used to put the point coordinates into the attribute table of the radial 

points and centroid points feature classes. The XY coordinates from the centroids were pasted as 

a second set of XYs into the attributes table of the radial points. The XY to Line Tool was used 

on the radial point attribute table. This created a new feature class that is made up of 360 
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polylines between the centroid point and each radial endpoint. Each line was assigned a degrees 

attribute between 1 and 360 

It was deemed important to include Calgary adjacent communities in the analysis. The 40-

kilometer distance of the buffer was chosen to include Okotoks in the region. This included 

Airdrie, Cochrane, Chestermere and Okotoks, which have a combined population of over 

145000. These communities have a suburban character and like Calgary are expanding at a rapid 

pace. Because of their proximity, it is worth including them in the analysis because they are part 

of a connected city-region.  

 

Time-Series Dataset 

 The extent of each individual dataset was erased according to the extent of the 5-year 

earlier dataset to isolate only polygons that represented growth over the intervening 5-years. The 

polygons in each dataset were collapsed into a single multipart feature using the Dissolve 

Boundaries tool. An attribute was added to identify the polygon year of origin and the 8 datasets 

were merged into a single ULE dataset. The Identity tool was used to parse each 40-kilometer 

radial line into 9 separate multipart lines for each sample year. Identification created a total line 

length (meters) attribute for each of the 5-year expansion lines. The tables were pivoted using the 

line degree ID as the pivot field to object length for each 5-year period as the data to be pivoted.  

  



  40 

 

 

Results 

Data Access + Preparation 

Image collections were selected, time-framed, cloud/cloud shadow masked, mosaiced and 

geographically clipped to create the study area layers in Figure 4 below. This is the resulting 

preliminary dataset in visual spectrum (RGB) format, but it contains may other bands that are not 

parameterized for display. 

 

Figure 2. Study area dataset (2015) displayed in RGB format. 40-kilometer radial region for Calgary. 

Screen capture from the Google Earth Engine user interface. 

 

Sample sites were prepared for testing and calibration throughout the iterative processes 

to follow. Two categories of sample sites were taken for four land cover types: residential, 

industrial, agricultural and forest. Histograms were plotted for the near infrared, red, green, blue 

digital number (DN) counts. 
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Figure 3. Sample sites for different land cover types. red=residential, blue=industrial, green=forest, 

yellow=agricultural.  

 

 

Figure 4. Histogram of visual spectrum plus near infrared digital number (DN) counts. Differences in 

spectral outputs for different surface types can be exploited to automate image classification. 

 



  42 

 

 

NDVI band + Binary Threshold 

Urban land. By observing the three following histograms it is apparent that non-urban 

land typically has NDVI values above 0.7, with a major inflection point at 0.85 (figure 7). The 

mixed composition of urban land makes the NDVI values significantly more spread out relative 

to the non-urban lands sample. Some of the higher values (see figure 7) could be characterized as 

cross sampling. This cross sampling occurs where trees are present in residential areas or a road 

cuts through an agricultural area, for example.  

Non-Urban Land. The histograms show that non-urban (agriculture and forest) land is 

most spectrally expressive in the -1.6 to -1.3 segment of the histogram. Residential occupies the 

center segment and industrial lands is most expressed above -0.5. There remain some 

overlapping values across the samples, however these are mostly representative of places where 

the sample sites contain small segments of the other land cover types (e.g. small greenspace in a 

residential neighborhood). Smoothing will reduce this effect. 

Data Convolution. The cross-sampled data was softened by running a 

kriging/convolution filter over the image to blend outlying pixel values using a low-pass filter.  

The convoluted histograms (figures 7-8) show that applying the low-pass filter was an effective 

tactic for concentrating DN values within their respective sample-appropriate ranges. The 

overlap between DN values in the 0.7 to 0.8 range was reduced by the convolution and it seems 

appropriate to assign a binary data splitting threshold at NDVI = 0.7. This threshold was applied 

as a binary classifier and the pre- and post-convolution images are shown in figure 9.
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Figure 5 (3 vertical). NDVI histograms of unconvoluted samples in 

combined and separated formats. 

Figure 6 (3 vertical). Histograms of convoluted samples in combined 

and separated formats. 
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Figure 7. NDVIb band with a binary separation (0=black=urban, 1=white=non-urban). These images 

are the result of implementing the NDVI threshold of NDVIc = 0.7 on the base image (left) and with a 5x5 

convolution filter (right) to remove high-frequency data and smooth out category cross-sampling.  

NDBI band + Binary Threshold 

Though each sample set was differentiated, it was decided that a low pass 5x5 

convolution would help reduce the high frequency data that was crossing the differencing 

threshold. The ideal threshold looked to be around DN = -0.35 for the 2015 sample. The DN 

histograms of the convoluted sample sites showed a greater degree of DN value concentration 

with fewer tail values which resulted in less data overlap across the differencing threshold. In the 

set of convoluted NDBI histograms (figures 10 & 11), it appears that the differentiation threshold 

has moved closer to DN = -0.4. However, it was deemed prudent to keep the differencing 

threshold closer to the urban land samples peak value at DN = -0.35, because the NDBI is prone 

to overestimating built-up land. The NDBIc was then recoded along the differentiation threshold 

of DN= -0.35 into the urban/non-urban segmented NDBIb binary band (see figure 9).  
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Figure 8 (3 vertical). NDBI histograms of unconvoluted samples in 

combined and separated formats. 
Figure 9 (3 vertical). NDBI histograms of convoluted samples in 

combined and separated formats. 
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Threshold Calibration. Initially it was thought that the two binary thresholds generated 

from the 2015 sample testing (above) could be applied to the other 7 images. However, the 

results were not satisfactory with the L5 and L7 datasets expressing urban and non-urban at 

different thresholds. This process of histogram analysis was performed for each image to 

ascertain a starting binary threshold which was then visually calibrated by the analyst to produce 

the best fidelity binary layer. The calibrated binary thresholds for each dataset are found in the 

table 1. 

Table 1. Summary of NDVI and NDBI binary differentiation thresholds as determined by histogram 

analysis and manual calibration. 

Dataset 𝑁𝐷𝑉𝐼𝑏 threshold 𝑁𝐷𝐵𝐼𝑏 threshold Landsat 

1995 0.55 -0.2 5 

1990 0.55 -0.2 5 

1995 0.6 -0.25 5 

2000 0.6 -0.2 7 

2005 0.6 -0.2 7 

2010 0.6 -0.2 7 

2015 0.7 -0.35 8 

2020 0.7 -0.3 8 

 

BUI band  

 The BUI band is created by subtracting the NDVI binary from the NDBI binary. Because 

these two datasets are identifying opposite features, the subtraction only mathematically acts on 

the discrepancies in land cover identification. Table X summarizes the land cover classification 

information as it is formatted in each respective dataset/image layer. These are listed in 

chronological order of data creation or transformations that lead to the BUI binary. This is 

reached not through more complex means of classification but through a semi-automatic 

segmentation built into the data transformation process.   
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Table 2. DN values for different land cover types after differencing and binary recoding. Based on 2015 

sample, see table 2 for precise annual thresholds. 

Land cover Residential Industrial  Woodland Farmland Waterbodies 

NDVIc < 0.7 < 0.7 > 0.7 > 0.7 < 0.7 

NDBIc > -0.35 > -0.35 < -0.35* < -0.35* < -0.35 

NDVIb 0 0 1 1 0 

NDBIb 1 1 0 or 1 0 or 1 0 

BUIb  1 1 0 or -1 0 or -1 0 

Classification Urban Non-urban 

* This data point is prone to overestimating urban land, however the inclusion of 

the more reliable NDVI in the BUI nullifies erroneously overclassified data 

 

 

Figure 10. Binary BUI layer of Calgary study area. Urban areas are represented by the white polygons 

(DN=1) and black is non-urban (DN=-1). The grey polygons (DN=0) were declassified from the NDBI by 

the negating effect of the NDVI, these represent non-urban land cover as well. 
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ULE Data Vectorization and Editing 

Using the parameters determined in the initial analysis phase, and urban land extent raster 

was generated for each 5-year time period between 1985 and 2020. This created 8 separate raster 

images that were put together as a time series dataset of ULE for Calgary and Edmonton. This 

image set was imported into ArcGIS Pro where they were vectorized.  

 

Figure 11. Vectorized City of Calgary UL extents from 1985 (orange) and 2020 (red) before noise 

deletion, manual editing, and aggregation.  
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Figure 13 demonstrates the need for cleaning and simplifying the UL extent polygons. 

Many small polygons beyond city limits are the result of small developments, barren land or 

industrial sites, none of which are of interest to this project. From the 2020 dataset, polygons of 

size less than or equal to 25 hectares were deleted and remaining polygons outside city limits 

were inspected with a satellite image underlay and deleted accordingly. Major holes in the urban 

polygons were manually filled with polygons and a merged Calgary region parklands dataset was 

deleted from the aggregated polygon file. This process resulted in a finished 2020 vector dataset. 

 

Figure 12. 2020 Calgary UL extent dataset before and after editing processes. 
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Figure 13. Urban Land Expansion of the City of Calgary between 1985 and 2020. Note significant spatial 

growth to the north and south with less gains on the east-west plane.  
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Radial Polyline Fan 

 

Figure 14. The 40-kilometer radial polyline fan used for measuring historical linear UL expansion.  

The radial vector feature was constructed of 360 polylines at 1-degree intervals. The lines 

will be used to measure to urban land expansion along each given 1-degree plane where they 

intersect with the UL polygon datasets. 40-kilometer coverage made sure that adjacent 

communities were captured in the analysis. The external communities were Cochrane, Airdrie, 

Okotoks and Chestermere.  
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Time-Series 

 

Figure 15. Calgary ULE map in linear directional data form. 
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Figure 16. Average linear urban land expansion rate by 5-year increments, measured in meters. 
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Figure 17. Map of linear directional ULE of Calgary between 1985 and 2020 
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Discussion 

Modeling Accuracy 

 The method applied to perform the “semiautomatic” classification of urban lands was 

directly derived from Zha (2003). That paper was a case study assessing the efficacy of the built-

up index (BUIb) method they proposed. Their 68 random pixel accuracy assessment revealed a 

93% accuracy of the urban classified pixels. He et al (2010) later proposed an algorithmic change 

to the Zha method and tested the accuracy of both semiautomatic classification schemes. Their 

study claimed that the Zha method had a 64% accuracy, while their improved method had 86.3% 

accuracy. Because of the degree of manual verification and editing that was applied to each tail 

end dataset in the time series (1985 and 2020) and subsequently incorporated into the interim 

datasets through data transformations, it would not have been meaningful to perform an accuracy 

assessment on the unedited BUIb or edited UL extents. Furthermore, it is not within the scope of 

this project to assess the strength of the ‘semiautomatic’ urban land classification method 

because it was only intended to be used as a preliminary data creation method. However, it is 

worth noting that in this case the BUI binary method was almost certainly below the 92.3% 

accuracy assessment of the method authors and was likely no lower than the 64% accuracy 

claimed by He et al (2010). Had the observable accuracy been near 92.3%, the dataset would not 

have needed such extensive manual editing work. 

 

Modeling Method 

The modeling method presented significant errors of both omission and commission, 

which ultimately created the need for extensive manual editing to be implemented to both reign-

in and fill-in the datasets by overlaying them on the RGB Landsat images. As a derivative of the 



  56 

 

 

extensive manual vector editing, merging and clipping functions needed to be implemented up 

and down the time-series to integrate the changes on the 1985 and 2020 into the rest of the time-

series datasets. This significantly increased to workload considering the method was termed 

“semiautomatic”. Other more cutting-edge methods could be applied in a future iteration of this 

study. Within Google Earth Engine it is possible to apply machine learning (ML) using training 

samples to perform land cover classifications. Tensorflow ML is integrated with GEE. This 

method would have likely been more accurate and possibly more expedient. Additionally, as of 

2019 Google’s AI platform can be plugged into GEE via Colab (Rao, 2019). AI-based image 

recognition would likely exceed the accuracy of any more rudimentary spectra-based models 

such as the one applied. However, once again comparative analysis of land-cover classification 

methodologies was beyond the scope of this project.  

 

Data Model Assumptions 

 The methodology applied to create the time-series ULE dataset was intendent to cut 

down on the amount of manual digitization by implementing a semi-automatic classification 

approach. In this respect it was somewhat successful. Throughout the construction of the UL 

extent datasets, two assumption were made which precipitated two logical operations to be 

implemented. The major assumptions were the (1) constancy and (2) permanence of urban 

development: that throughout the study period the city was always growing, and never de-

developing. The only observed instances of de-development was the natural reclamation of the 

gravel pit in Nose Hill Park and errors of omission. However, the first object was not 

consequential because it was clipped out by the park and waterbodies exclusion.  
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This logical operation of the constancy assumption is that going backwards 

chronologically, more recent datasets could be used to delimit previous extents. This operation 

would cut down on errors of commission. This logic dictates that a given plot that is 

undeveloped in 2020 would have also been undeveloped in all previous 5-year periods. 

According to this assumption of development constancy, each dataset was clipped down using 

the extent of the 5-year newer ULE extent.  

Secondly, moving up through datasets chronologically, it is reasoned that due to the 

permanence of urbanization, any given piece of lands developed in 1985 would remain 

developed in all future 5-year increments of data. This logic justified merging earlier UL 

polygons into newer datasets to ensure there were no cases of omission error where land was 

only developed in an earlier dataset. It is reasonable to expect no degrowth in Calgary because 

the city has consistently grown in population and spatial footprint throughout the study periods. 

Imperfections in the semiautomatic classification and manual editing resulted in instances of 

omission errors that would have represented de-development of urban properties. The addition of 

the merging process resolved this logical inconsistency.  

 

Land Developability 

Not all land is physically developable. Examples of this include water bodies, riparian 

areas and steep or unstable slopes. Additionally, lands can become protected from development 

because of land governance, politics or environmental sensitivity. Examples of this include 

indigenous reserves, parks and greenbelts. This model could have been structured with greater 

detail to establish such exclusions; however, the simple classification approach is still effective 
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because the redistributive effect of undevelopability on city growth is captured in the linear 

urban growth pace measurements. 

Though waterbodies and parks are excluded from direct measurement in the linear urban 

growth pace, their broader influence on the pace of development is captured. Parks are a 

necessary feature of great cities and communities, which is why planners spatially distribute 

parks to ensure accessibility for all citizens. This relatively even distribution means that the 

uncounted (in the linear model) effect of parks development on linear urban growth is somewhat 

evened out across each directional measurement. Parks also have a market-based displacement 

effect on developable land supply. In the simplest terms, where a park fails to meet a market-

demand for housing at the park site, the demand is met by a housing purchase or land 

development elsewhere, which in turn influences the outward growth of the city. For this reason, 

the influence of land protection within the developed portion of cities is accounted for as a 

necessary aspect of city building. 

Additionally, small greenspaces that are not designated as parks were convoluted into the 

urban land cover category because of low-pass filtering. Assuming the land development 

paradigm does not change substantially, the effect of land development exclusions on the pace of 

development should remain similar going forward to the effect that was captured within this 

methodology. Land that was physically undevelopable for geophysical reason is typically 

incorporated into the managed parks system. This is exemplified by the extensive parks system 

in Calgary that is made up of many bluffs and steep hills that were presumably deemed 

undevelopable by land development engineers.  
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Pace and Geometry of ULE 

Surprisingly, the average periodized linear ULE shows a clear increasing trend between 

1985 and 2015 (figure 18). Though acceleration of areal/surficial ULE is almost a given 

considering the critical mass-like nature of city growth, the result of which is somewhat of an 

exponential areal growth curve under the current development paradigm. There should be 

somewhat of an asymmetric relationship between linear and areal ULE. Basic geometry dictates 

that as cities become bigger, a greater the amount of land surface that needs to be urbanized to 

linearly extend the city by a fixed distance. This relationship could even result in a decelerating 

linear growth rate while the areal growth rate is accelerating. This odd case could occur in very 

large cities, where the addition of only a small amount of linear urbanized distance can result in 

massive population and urbanize land growth.  

Adjacent communities were included in this study because of their effect on regional 

growth. The growth of communities like Cochrane, Okotoks, Chestermere and Airdrie are 

inextricably tied to the growth, development and economic strength of Calgary. Their close 

regional ties mean that these communities collectively are worth consideration as a single 

regional urban entity. It is important to consider that these communities add two extra growth-

frontiers to each polyline that passed through them. For example, a polyline that aligned with 

Okotoks would have the growth frontier on the southern perimeter of the central city (Calgary), 

as well as an additional growth-frontier on either side of Okotoks. Though this has somewhat of 

a distortive effect on the data model, it was deemed important to include them anyway. 

Unsurprisingly, the distortions were not hugely consequential. Because of the size of those 

communities, they grow at a much slower lineal pace. 
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The planes with fastest total lineal growth during the 35-year study period were the 

south-east and north-east cardinal directions. The southeast development was driven largely by 

residential development and the expansion of the Stoney Trail ring road. The northeast 

directional growth plane had the highest growth of any LDULE measurements. This was due to a 

convergence of growth factors. A large increase in industrial lands around the airport, residential 

neighbourhoods east of the airport with commensurate retail development, the construction of 

the Stoney Train ring road north quadrant, residential growth in Airdrie (which intersected with 

several polylines) and the development of lands outside of the ring road (industrial lands near 

CrossIron Mills and Balzac power station).  

 

Rate of Change 

 Interestingly, Calgary’s rate of linear ULE of 618m from 2015-2020 represented a quite 

drastic drop of around 40% from the 2010-2015 rate of 1006m. Seeing as Calgary is a corporate 

center for the oil and gas industry in western Canada, the 2014 drop in oil prices maybe have 

been a factor in this drop in the ULE rate. The economic climate in the city changed drastically 

because of this economic event and growth driven housing expansion may have slowed down as 

a result. Another possible factor at play is that the 2010-2015 measurement was anomalously 

high because a large amount of land was broken for the construction of the Stoney Trail in the 

south and east quadrants of the city and large tracts of industrial lands were developed near the 

airport (see figure 15 map, 2015 expansion tranche).  

Transportation infrastructure and industrial land development can urbanize large amounts 

of land very quickly compared to residential development. The sudden drop in industrial 

development caused by the 2014 oil bust may have been even more drastic than a slowdown in 
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residential development led ULE. The development of Stoney Trail alone could have added 

several dozen meters to the average linear ULE because of the sheer volume off land required to 

build the transportation and utility corridor. However, the 2010-2015 measurement is not 

necessarily anomalous because it was keeping with the trend up to that point. It is possible that 

given the current size of Calgary, a linear expansion pace of 1km per 5 years is not sustainable 

without a symmetric expansion of housing, industrial and public infrastructural lands. These 

symmetrical conditions can only exist when the regional economy is experiencing a sustained 

period of growth, which is fairly rare. 

 

Density & Deceleration 

Some recent outer rim neighbourhoods will have a higher density pattern when compared 

to the development paradigm of 1950s-2000s where entire developments were land-inefficient 

single-detached homes. These new outer rim neighbourhoods will probably be more like what 

suburban development will resemble going forward with mixed-use and mixed density that is 

characteristic of edge city thought in urban planning circles. Though this process of increasing 

density through new forms of urban development will be an incremental long-term project, some 

examples of higher-density development paradigms are emerging.  

Edmonton has successfully built the Windermere neighbourhood outside of the Anthony 

Henday ring road, with a commercial district, condo towers and a mixed density of housing 

options. St. Albert has successfully developed several apartment towers throughout the city with 

incorporated commercial ground floors in a community that is known for being a family-oriented 

suburb made almost entirely of single-detached homes.  



  62 

 

 

Though the economic explanation for Calgary’s recent LULE slowdown may be more 

compelling, it is possible that edge city style development and incrementally higher density 

suburbs being developed since 2015 are responsible for some of the drop in linear ULE. On 

aggregate, more land-efficient development could decrease both linear and areal ULE rates 

barring a surge in housing or commercial space demand that is more powerful than the 

deflationary effect of rising density on ULE metrics. Moving forward it would be interesting to 

see if the 30-year trend of rising linear ULE rate returns.  

 

Applications & Further Research 

Time-to-Development Prediction Models. While most ULE forecasts are made by 

multiplying population growth forecasts by present development density, perhaps a prediction 

method could emerge that utilises linear directional ULE as a prediction variable. This project 

demonstrated the possibility of analysing the change of centroid-to-fringe polylines over various 

time periods in terms of the pace of development or trend in terms of linear distance growth in 

specific outward directions. This directional data could be consequential for the prediction of 

time-to-development for specific developable properties beyond city limits. This differs from the 

typical research perspective of concern for agricultural land loss, which results in area/surface 

focused research, modelling, and prediction. Even less discussed is the utility of plot specific 

time-to-development ULE predictors for conservationists to focus their efforts sequentially, as 

opposed to organizing their efforts according to complex environmental sensitivity studies or 

subjective levels of environmental concern. Such a model could increase the efficiency and 

efficacy of conservationists by helping them determine which lands are closest to being lost to 

urbanization.  
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LULE, AULE & Density. A comparative study of Linear ULE (LULE), Areal ULE 

(AULE) and development density would likely result in interesting insights about the 

relationship between city expansion and land loss. Analytic tools could be developed for city 

planning departments that target expansion rates and the density of development approvals. 

Hypothetically, urban development could be regulated to ensure a decelerating rate LULE. 

Though linear city growth is an abstracted metric from true land conservation, which is better 

measured by AULE, it could be used as a goal post to determine reasonable and achievable 

improvements in long-term land conservation. Additionally, LULE captures the impact of 

dispersal on urban mobility better than AULE does. From a transportation planning perspective, 

indexing city growth to reduce the rate of LULE could reduce the need for new automobile-

oriented transportation infrastructure and indirectly make public transportation more viable by 

increasing population density and reducing distances travelled. Something like this could 

hypothetically be an alternative to greenbelting or other forms of land development restrictions. 

Weighted Averaging LULE. A proximity based weighted averaging system would have 

improved the insights of the model presented in figure 19. The directional data was relatively 

well distributed, with mostly consistent clustering of rates along adjacent lines. For that reason, 

this instance did not demonstrate a pressing need for data smoothing. However, some softening 

of the data may have provided a more aggregated and holistic perspective of which sectors of the 

city were growing at the fastest rates. This could have been implemented by averaging the ULE 

rate of each polyline with the weighted values of a few adjoining lines. Further research of this 

topic should implement some proximity-weighted averaging to remove any potential noise in the 

final data.  
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Conclusion 

 Globally, urbanisation appears to be an unstoppable force as the populations of cities 

swell and the socio-economic transformations of the information age enshrine urban regions as 

the main economic drivers of the global economy. Within this context, urbanisation presents a 

unique set of opportunities and challenges. Well planned and densified cities can render essential 

services efficiently and provide people with myriad opportunities to improve their lives. On the 

other hand, unfettered urbanisation threatens to destabilize the fragile relationship between 

humankind and nature. Cities that urbanise poorly can become environmental, human health and 

socio-political disaster zones. We must begin to accelerate efforts to build cities upward, not 

outwards, in order to accommodate growing urban populations in a more sustainable way and 

not harm the important natural mechanisms that render essential ecosystem services to humanity. 

For this reason, it is important to monitor the growth of urban regions throughout the world.    

 This paper proposed a methodology to assess the rate at which cities are expanding 

linearly. This Linear Urban Land Expansion (LULE) measurement was applied to Calgary, 

Alberta, a city on the western Canadian prairies that has experienced explosive growth over the 

last four decades. The method used Landsat imagery to determine the evolution of the urbanized 

footprint of the city between 1985 and 2020. Google Earth Engine (GEE) was used to analyse 

the satellite imagery archive efficiently using powerful cloud infrastructure. Though the project 

was not completed entirely in GEE, it is conceivable that all the functions necessary to create 

these metrics could be moved into GEE, making the project highly reproducible across any urban 

region throughout the world. The results showed a nuanced build-out of the city with higher rates 

of linear expansion in certain quadrants. A relatively stable accelerating trend was also observed 

between 1985-2015, before a significant drop between 2015 and 2020.  
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